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How to construct interesting ultrafilters ?
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» There is a weak P-point ultrafilter! (Kunen)



ZFC Constructions II.

Definition

Suppose F is a filter on w. We say a family (or a matrix)

X ={X}5:n<w,a€r,B €A} of subsets of w is a by A
independent linked family w.r.t. F if For each o, 5,n we have
Ao C A”Jrl (i.e. the sets increase with n), and for each finite set
of mdeces Le [A]<¥, for each function n: L — w and

A € Jlgerls #]"®) and each F € F the intersection

Fn() N Xﬂ

BEL acA(B)

is infinite, while for each 8 € A\,n < w, A € [k]"*! the intersection
) Xos
a€cA

is finite.



ZFC Constructions IlI.

Theorem (Shelah)

It is consistent with ZFC that there are no P-point ultrafilters!
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CH & MA & friends

Assuming 0 = ¢ there is a P-point.

» Usually inductive constructions.
» Almost all ultrafilters you can come up with.

» Still too much work.
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P-points

U is a P-point if for any descending (A,, : n < w) sequence of sets
from U there is an interval partition (I,, : n < w) such that
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U is a P-point if for any descending (A,, : n < w) sequence of sets
from U there is an interval partition (I,, : n < w) such that

UAnﬂIneu

nw

Theorem (Zapletal)

U is a P-point if any analytic ideal disjoint from U can be
separated from U by an F,-ideal.
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P-points, Il.

Folklore

If I is an F, ideal then forcing with P(w)/I adds a P-point.

» The key is to prove that P(w)/I is o-closed.

» Use Mazur's theorem, that
I =Fin(p) ={X Cw: u(X) < oo} for some Iscsm .
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P-points, IlI.

P(w)/I adds a P-point iff I is locally F,.

» Choose a condition A and a generic G containing the
condition A.

» Use Zapletal's theorem in the extension to find an Fj-ideal J
disjoint from the generic.

» Since the forcing is o-closed, J is in the groundmodel.
> Arguethat I [ A=J | A.
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Complex, locally F,, example

There are tall Borel ideals of arbitrary high complexity which are
locally Fy.

Given an A C 2%, let T4 be the ideal on w<% generated by

» branches in A (i.e. sets of the form {f [ n:n < w} for
feA)

» antichains in w<¥

> sets of the form {f [n:n € X} for f ¢ A, X € I,
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Selective ultrafilters

U is selective if for any partition of w into sets from U/ there is a
selector in U.

Theorem (Mathias)

U is selective iff it is disjoint from each tall analytic ideal.

Corollary

P(w)/I adds a selective ultrafilter iff I is locally fin.
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Katétov-Blass order, £D g,

Definition

An ideal I is Katétov-Blass below J (I <gp J) if there is a
finite-to-one f : w — w such that preimages of I-small sets are
J-small.

Definition
ED iy is the ideal on {(z,y) : < y,z,y € w} consisting of sets
which can be covered by finitely many functions

An ideal I is summable, if there is some g : w — RJ such that

I:{ng:Zf(n)<oo}

neX



Q-points

An ultrafilter U is a Q-point if for any interval partition
(I : n < w) of w there is a selector in U.




An ultrafilter U is a Q-point if for any interval partition
(I : n < w) of w there is a selector in U.

P(w)/I adds a Q-point iff I is locally not KB-above fin.
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Rapid ultrafilters

Definition
An ultrafilter U is rapid if for any interval partition (I,, : n < w) of
w there is an A € U such that |[ANI,| < n.

Theorem (Vojtas)

An ultrafilter U is rapid iff it intersects each tall summable ideal.

Theorem

P(w)/I adds a rapid ultrafilter iff I is locally not KB-above a tall
summable ideal.
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Canjar ultrafilters

Definition
An ultrafilter is Canjar if forcing with My, does not add a
dominating real.

Conjecture (Laflamme)

An ultrafilter is Canjar iff it is a P-point with no rapid
RK-predecessor

Theorem

If I is a tall F,, P-ideal then P(w)/I does adds a P-point with no
rapid RK-predecessors which is not Canjar
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HM-condition, strong P-points

Theorem (Hrusak-Minami)

U is Canjar iff each descending sequence X,, € ([U]<¥)*" has a
pseudointersection in ([U]<¥)*, where

(U]<“)" = {X C [W]<¥ : (VF € U)(3a € X)(a C F)}

Theorem (Blass, Laflamme)

U is Canjar iff it is a strong P-point.
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For the first part use Vojtas's characterization of rapid
ultrafilters and Mazur's theorem.

Compute a little bit.

Use characterization of Canjar ultrafilters due to Hrusak and
Minami.

Let I = Fin(u) = Exh(p), X, = {a € [w]<¥ : u(a) > n}.

Compute a bit more . ..
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For the first part use Vojtas's characterization of rapid
ultrafilters and Mazur's theorem.

Compute a little bit.

Use characterization of Canjar ultrafilters due to Hrusak and
Minami.

Let I = Fin(u) = Exh(p), X, = {a € [w]<¥ : u(a) > n}.
Compute a bit more . ..

and you are done.
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Existence of Canjar ultrafilters

Theorem (Canjar)

Forcing with F,-ideal adds a Canjar ultrafilter.

Is there an ideal I such that P(w)/I adds a Canjar ultrafilter?
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P(w)/ED ¢y, adds a rapid with a selective RB-below.

fin x fin adds a Q-point which is not a P-point.

P(w)/Gc adds a rapid which is neither a P-point nor a Q-point.



