Ultrafilters generic over $\mathcal{P}(\mathbb{N})/I$

Jonathan L. Verner (joint work with M. Hrušák)

Hejnice, January 2011

How to construct interesting ultrafilters ?

► There is a **free** ultrafilter. (Zermelo ?)

- ► There is a **free** ultrafilter. (Zermelo ?)
- ▶ There is a weak P-point ultrafilter! (Kunen)

ZFC Constructions II.

Definition

Suppose \mathcal{F} is a filter on ω . We say a family (or a matrix) $\mathcal{X} = \{X_{\alpha,\beta}^n : n < \omega, \alpha \in \kappa, \beta \in \lambda\}$ of subsets of ω is a κ by λ **independent linked family w.r.t.** \mathcal{F} if For each α, β, n we have $A_{\alpha,\beta}^n \subseteq A_{\alpha,\beta}^{n+1}$ (i.e. the sets increase with n), and for each finite set of indeces $L \in [\lambda]^{<\omega}$, for each function $n : L \to \omega$ and $A \in \prod_{\beta \in L} [\kappa]^{n(\beta)}$ and each $F \in \mathcal{F}$ the intersection

$$F \cap \bigcap_{\beta \in L} \bigcap_{\alpha \in A(\beta)} X^{n(\beta)}_{\alpha,\beta}$$

is infinite, while for each $\beta \in \lambda, n < \omega, A \in [\kappa]^{n+1}$ the intersection

$$\bigcap_{\alpha \in A} X^n_{\alpha,\beta}$$

is finite.

Theorem (Shelah)

It is consistent with ZFC that there are no P-point ultrafilters!

Assuming $\mathfrak{d} = \mathfrak{c}$ there is a *P*-point.

Assuming $\mathfrak{d} = \mathfrak{c}$ there is a *P*-point.

Usually inductive constructions.

Assuming $\mathfrak{d} = \mathfrak{c}$ there is a *P*-point.

- ► Usually inductive constructions.
- ▶ Almost all ultrafilters you can come up with.

Assuming $\mathfrak{d} = \mathfrak{c}$ there is a *P*-point.

- Usually inductive constructions.
- ▶ Almost all ultrafilters you can come up with.
- ▶ Still too much work.

Force with F_{σ} -ideals (adds a Canjar ultrafilter).

- ▶ Force with F_{σ} -ideals (adds a Canjar ultrafilter).
- ▶ Force with analytic ideals (adds non-rapid non-p-points).

- Force with F_{σ} -ideals (adds a Canjar ultrafilter).
- ▶ Force with analytic ideals (adds non-rapid non-p-points).
- Force with $\mathcal{P}(\omega)/fin$ (adds a selective ultrafilter).

- Force with F_{σ} -ideals (adds a Canjar ultrafilter).
- ▶ Force with analytic ideals (adds non-rapid non-p-points).
- Force with $\mathcal{P}(\omega)/fin$ (adds a selective ultrafilter).

 \mathcal{U} is a P-point if for any descending $\langle A_n : n < \omega \rangle$ sequence of sets from \mathcal{U} there is an interval partition $\langle I_n : n < \omega \rangle$ such that

$$\bigcup_{n<\omega}A_n\cap I_n\in\mathcal{U}$$

 \mathcal{U} is a P-point if for any descending $\langle A_n : n < \omega \rangle$ sequence of sets from \mathcal{U} there is an interval partition $\langle I_n : n < \omega \rangle$ such that

$$\bigcup_{n<\omega}A_n\cap I_n\in\mathcal{U}$$

Theorem (Zapletal)

 \mathcal{U} is a P-point if any analytic ideal disjoint from \mathcal{U} can be separated from \mathcal{U} by an F_{σ} -ideal.

Folklore

If I is an F_{σ} ideal then forcing with $\mathcal{P}(\omega)/I$ adds a P-point.

Folklore

If I is an F_{σ} ideal then forcing with $\mathcal{P}(\omega)/I$ adds a P-point.

Proof.

▶ The key is to prove that $\mathcal{P}(\omega)/I$ is σ -closed.

Folklore

If I is an F_{σ} ideal then forcing with $\mathcal{P}(\omega)/I$ adds a P-point.

- The key is to prove that $\mathcal{P}(\omega)/I$ is σ -closed.
- ▶ Use Mazur's theorem, that
 - $I = Fin(\mu) = \{X \subseteq \omega : \mu(X) < \infty\}$ for some lscsm μ .

 $\mathcal{P}(\omega)/I$ adds a P-point iff I is locally F_{σ} .

 $\mathcal{P}(\omega)/I$ adds a P-point iff I is locally F_{σ} .

Proof.

Choose a condition A and a generic G containing the condition A.

 $\mathcal{P}(\omega)/I$ adds a P-point iff I is locally F_{σ} .

- Choose a condition A and a generic G containing the condition A.
- Use Zapletal's theorem in the extension to find an F_σ-ideal J disjoint from the generic.

 $\mathcal{P}(\omega)/I$ adds a P-point iff I is locally F_{σ} .

- Choose a condition A and a generic G containing the condition A.
- Use Zapletal's theorem in the extension to find an F_σ-ideal J disjoint from the generic.
- Since the forcing is σ -closed, J is in the groundmodel.

 $\mathcal{P}(\omega)/I$ adds a P-point iff I is locally F_{σ} .

- Choose a condition A and a generic G containing the condition A.
- Use Zapletal's theorem in the extension to find an F_σ-ideal J disjoint from the generic.
- Since the forcing is σ -closed, J is in the groundmodel.

• Argue that
$$I \upharpoonright A = J \upharpoonright A$$
.

There are tall Borel ideals of arbitrary high complexity which are locally F_{σ} .

There are tall Borel ideals of arbitrary high complexity which are locally F_{σ} .

Proof.

Given an $A \subseteq 2^{\omega}$, let I_A be the ideal on $\omega^{<\omega}$ generated by

There are tall Borel ideals of arbitrary high complexity which are locally F_{σ} .

Proof.

Given an $A \subseteq 2^{\omega}$, let I_A be the ideal on $\omega^{<\omega}$ generated by

▶ branches in A (i.e. sets of the form $\{f \upharpoonright n : n < \omega\}$ for $f \in A$)

There are tall Borel ideals of arbitrary high complexity which are locally F_{σ} .

Proof.

Given an $A \subseteq 2^{\omega}$, let I_A be the ideal on $\omega^{<\omega}$ generated by

- ▶ branches in A (i.e. sets of the form $\{f \upharpoonright n : n < \omega\}$ for $f \in A$)
- \blacktriangleright antichains in $\omega^{<\omega}$

There are tall Borel ideals of arbitrary high complexity which are locally F_{σ} .

Proof.

Given an $A\subseteq 2^{\omega},$ let I_A be the ideal on $\omega^{<\omega}$ generated by

- ▶ branches in A (i.e. sets of the form $\{f \upharpoonright n : n < \omega\}$ for $f \in A$)
- \blacktriangleright antichains in $\omega^{<\omega}$
- ▶ sets of the form $\{f \upharpoonright n : n \in X\}$ for $f \notin A$, $X \in I_{1/n}$

 ${\mathcal U}$ is selective if for any partition of ω into sets from ${\mathcal U}$ there is a selector in ${\mathcal U}.$

 ${\mathcal U}$ is selective if for any partition of ω into sets from ${\mathcal U}$ there is a selector in ${\mathcal U}.$

Theorem (Mathias)

 ${\cal U}$ is selective iff it is disjoint from each tall analytic ideal.

 ${\mathcal U}$ is selective if for any partition of ω into sets from ${\mathcal U}$ there is a selector in ${\mathcal U}.$

Theorem (Mathias)

 ${\cal U}$ is selective iff it is disjoint from each tall analytic ideal.

Corollary

 $\mathcal{P}(\omega)/I$ adds a selective ultrafilter iff I is locally fin.

An ideal I is Katětov-Blass below J ($I \leq_{KB} J$) if there is a finite-to-one $f: \omega \to \omega$ such that preimages of I-small sets are J-small.

An ideal I is Katětov-Blass below J ($I \leq_{KB} J$) if there is a finite-to-one $f: \omega \to \omega$ such that preimages of I-small sets are J-small.

Definition

 $\mathcal{E}D_{fin}$ is the ideal on $\{(x,y):x\leq y,x,y\in\omega\}$ consisting of sets which can be covered by finitely many functions

An ideal I is Katětov-Blass below J ($I \leq_{KB} J$) if there is a finite-to-one $f: \omega \to \omega$ such that preimages of I-small sets are J-small.

Definition

 $\mathcal{E}D_{fin}$ is the ideal on $\{(x,y):x\leq y,x,y\in\omega\}$ consisting of sets which can be covered by finitely many functions

Definition

An ideal I is summable, if there is some $g: \omega \to \mathbb{R}^+_0$ such that

$$I = \left\{ X \subseteq \omega : \sum_{n \in X} f(n) < \infty \right\}$$

An ultrafilter \mathcal{U} is a Q-point if for any interval partition $\langle I_n : n < \omega \rangle$ of ω there is a selector in \mathcal{U} .

An ultrafilter \mathcal{U} is a Q-point if for any interval partition $\langle I_n : n < \omega \rangle$ of ω there is a selector in \mathcal{U} .

Theorem

 $\mathcal{P}(\omega)/I$ adds a Q-point iff I is locally not KB-above fin.

An ultrafilter \mathcal{U} is rapid if for any interval partition $\langle I_n : n < \omega \rangle$ of ω there is an $A \in \mathcal{U}$ such that $|A \cap I_n| \leq n$.

An ultrafilter \mathcal{U} is rapid if for any interval partition $\langle I_n : n < \omega \rangle$ of ω there is an $A \in \mathcal{U}$ such that $|A \cap I_n| \leq n$.

Theorem (Vojtáš)

An ultrafilter \mathcal{U} is rapid iff it intersects each tall summable ideal.

An ultrafilter \mathcal{U} is rapid if for any interval partition $\langle I_n : n < \omega \rangle$ of ω there is an $A \in \mathcal{U}$ such that $|A \cap I_n| \le n$.

Theorem (Vojtáš)

An ultrafilter \mathcal{U} is rapid iff it intersects each tall summable ideal.

Theorem

 $\mathcal{P}(\omega)/I$ adds a rapid ultrafilter iff I is locally not KB-above a tall summable ideal.

An ultrafilter is Canjar if forcing with $\mathbb{M}_{\mathcal{U}}$ does not add a dominating real.

An ultrafilter is Canjar if forcing with $\mathbb{M}_{\mathcal{U}}$ does not add a dominating real.

Conjecture (Laflamme)

An ultrafilter is Canjar iff it is a P-point with no rapid RK-predecessor

An ultrafilter is Canjar if forcing with $\mathbb{M}_{\mathcal{U}}$ does not add a dominating real.

Conjecture (Laflamme)

An ultrafilter is Canjar iff it is a P-point with no rapid RK-predecessor

Theorem

If I is a tall F_{σ} P-ideal then $\mathcal{P}(\omega)/I$ does adds a P-point with no rapid RK-predecessors which is **not** Canjar

Theorem (Hrušák-Minami)

 \mathcal{U} is Canjar iff each descending sequence $X_n \in ([\mathcal{U}]^{<\omega})^+$ has a pseudointersection in $([\mathcal{U}]^{<\omega})^+$, where

Theorem (Hrušák-Minami)

 \mathcal{U} is Canjar iff each descending sequence $X_n \in ([\mathcal{U}]^{<\omega})^+$ has a pseudointersection in $([\mathcal{U}]^{<\omega})^+$, where

$$([\mathcal{U}]^{<\omega})^+ = \{ X \subseteq [\omega]^{<\omega} : (\forall F \in \mathcal{U}) (\exists a \in X) (a \subseteq F) \}$$

Theorem (Hrušák-Minami)

 \mathcal{U} is Canjar iff each descending sequence $X_n \in ([\mathcal{U}]^{<\omega})^+$ has a pseudointersection in $([\mathcal{U}]^{<\omega})^+$, where

$$([\mathcal{U}]^{<\omega})^+ = \{ X \subseteq [\omega]^{<\omega} : (\forall F \in \mathcal{U}) (\exists a \in X) (a \subseteq F) \}$$

Theorem (Blass, Laflamme)

 ${\cal U}$ is Canjar iff it is a strong P-point.

 For the first part use Vojtáš's characterization of rapid ultrafilters and Mazur's theorem.

- For the first part use Vojtáš's characterization of rapid ultrafilters and Mazur's theorem.
- ► Compute a little bit.

- For the first part use Vojtáš's characterization of rapid ultrafilters and Mazur's theorem.
- Compute a little bit.
- Use characterization of Canjar ultrafilters due to Hrušák and Minami.

- For the first part use Vojtáš's characterization of rapid ultrafilters and Mazur's theorem.
- Compute a little bit.
- Use characterization of Canjar ultrafilters due to Hrušák and Minami.

▶ Let
$$I = Fin(\mu) = Exh(\mu)$$
, $X_n = \{a \in [\omega]^{<\omega} : \mu(a) \ge n\}$.

- For the first part use Vojtáš's characterization of rapid ultrafilters and Mazur's theorem.
- Compute a little bit.
- Use characterization of Canjar ultrafilters due to Hrušák and Minami.

▶ Let
$$I = Fin(\mu) = Exh(\mu)$$
, $X_n = \{a \in [\omega]^{<\omega} : \mu(a) \ge n\}$.

Compute a bit more ...

- For the first part use Vojtáš's characterization of rapid ultrafilters and Mazur's theorem.
- ► Compute a little bit.
- Use characterization of Canjar ultrafilters due to Hrušák and Minami.

• Let
$$I = Fin(\mu) = Exh(\mu)$$
, $X_n = \{a \in [\omega]^{<\omega} : \mu(a) \ge n\}$.

- Compute a bit more ...
- and you are done.

Theorem (Canjar)

Forcing with F_{σ} -ideal adds a Canjar ultrafilter.

Theorem (Canjar)

Forcing with F_{σ} -ideal adds a Canjar ultrafilter.

Question

Is there an ideal I such that $\mathcal{P}(\omega)/I$ adds a Canjar ultrafilter?

Example

 $\mathcal{P}(\omega)/\mathcal{E}D_{fin}$ adds a rapid with a selective RB-below.

Example

 $\mathcal{P}(\omega)/\mathcal{E}D_{fin}$ adds a rapid with a selective RB-below.

Example

 $fin \times fin$ adds a Q-point which is not a P-point.

Example

 $\mathcal{P}(\omega)/\mathcal{E}D_{fin}$ adds a rapid with a selective RB-below.

Example

 $fin \times fin$ adds a Q-point which is not a P-point.

Example

 $\mathcal{P}(\omega)/\mathcal{G}_C$ adds a rapid which is neither a P-point nor a Q-point.