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Motivation

How to construct interesting ultrafilters ?



ZFC Constructions

Theorem
I There is a free ultrafilter. (Zermelo ?)

I There is a weak P-point ultrafilter! (Kunen)
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ZFC Constructions II.

Definition
Suppose F is a filter on ω. We say a family (or a matrix)
X = {Xn

α,β : n < ω, α ∈ κ, β ∈ λ} of subsets of ω is a κ by λ
independent linked family w.r.t. F if For each α, β, n we have
Anα,β ⊆ A

n+1
α,β (i.e. the sets increase with n), and for each finite set

of indeces L ∈ [λ]<ω, for each function n : L→ ω and
A ∈

∏
β∈L[κ]n(β) and each F ∈ F the intersection

F ∩
⋂
β∈L

⋂
α∈A(β)

X
n(β)
α,β

is infinite, while for each β ∈ λ, n < ω,A ∈ [κ]n+1 the intersection⋂
α∈A

Xn
α,β

is finite.



ZFC Constructions III.

Theorem (Shelah)
It is consistent with ZFC that there are no P-point ultrafilters!



CH & MA & friends

Theorem
Assuming d = c there is a P-point.

I Usually inductive constructions.
I Almost all ultrafilters you can come up with.
I Still too much work.
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Forcing (the „easy“ way)

I Force with Fσ-ideals (adds a Canjar ultrafilter).

I Force with analytic ideals (adds non-rapid non-p-points).
I Force with P(ω)/fin (adds a selective ultrafilter).



Forcing (the „easy“ way)

I Force with Fσ-ideals (adds a Canjar ultrafilter).
I Force with analytic ideals (adds non-rapid non-p-points).

I Force with P(ω)/fin (adds a selective ultrafilter).



Forcing (the „easy“ way)

I Force with Fσ-ideals (adds a Canjar ultrafilter).
I Force with analytic ideals (adds non-rapid non-p-points).
I Force with P(ω)/fin (adds a selective ultrafilter).



Forcing (the „easy“ way)

I Force with Fσ-ideals (adds a Canjar ultrafilter).
I Force with analytic ideals (adds non-rapid non-p-points).
I Force with P(ω)/fin (adds a selective ultrafilter).



P-points

Definition
U is a P-point if for any descending 〈An : n < ω〉 sequence of sets
from U there is an interval partition 〈In : n < ω〉 such that⋃

n<ω

An ∩ In ∈ U

Theorem (Zapletal)
U is a P-point if any analytic ideal disjoint from U can be
separated from U by an Fσ-ideal.
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P-points, II.

Folklore
If I is an Fσ ideal then forcing with P(ω)/I adds a P-point.

Proof.
I The key is to prove that P(ω)/I is σ-closed.
I Use Mazur’s theorem, that
I = Fin(µ) = {X ⊆ ω : µ(X) <∞} for some lscsm µ.
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P-points, III.

Theorem
P(ω)/I adds a P-point iff I is locally Fσ.

Proof.
I Choose a condition A and a generic G containing the

condition A.
I Use Zapletal’s theorem in the extension to find an Fσ-ideal J

disjoint from the generic.
I Since the forcing is σ-closed, J is in the groundmodel.
I Argue that I � A = J � A.
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Complex, locally Fσ example

Example
There are tall Borel ideals of arbitrary high complexity which are
locally Fσ.

Proof.
Given an A ⊆ 2ω, let IA be the ideal on ω<ω generated by
I branches in A (i.e. sets of the form {f � n : n < ω} for
f ∈ A)

I antichains in ω<ω

I sets of the form {f � n : n ∈ X} for f 6∈ A, X ∈ I1/n
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Selective ultrafilters

Definition
U is selective if for any partition of ω into sets from U there is a
selector in U .

Theorem (Mathias)
U is selective iff it is disjoint from each tall analytic ideal.

Corollary
P(ω)/I adds a selective ultrafilter iff I is locally fin.
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Katětov-Blass order, EDfin

Definition
An ideal I is Katětov-Blass below J (I ≤KB J) if there is a
finite-to-one f : ω → ω such that preimages of I-small sets are
J-small.

Definition
EDfin is the ideal on {(x, y) : x ≤ y, x, y ∈ ω} consisting of sets
which can be covered by finitely many functions

Definition
An ideal I is summable, if there is some g : ω → R+

0 such that

I =
{
X ⊆ ω :

∑
n∈X

f(n) <∞
}
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Q-points

Definition
An ultrafilter U is a Q-point if for any interval partition
〈In : n < ω〉 of ω there is a selector in U .

Theorem
P(ω)/I adds a Q-point iff I is locally not KB-above fin.
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Rapid ultrafilters

Definition
An ultrafilter U is rapid if for any interval partition 〈In : n < ω〉 of
ω there is an A ∈ U such that |A ∩ In| ≤ n.

Theorem (Vojtáš)
An ultrafilter U is rapid iff it intersects each tall summable ideal.

Theorem
P(ω)/I adds a rapid ultrafilter iff I is locally not KB-above a tall
summable ideal.
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Canjar ultrafilters

Definition
An ultrafilter is Canjar if forcing with MU does not add a
dominating real.

Conjecture (Laflamme)
An ultrafilter is Canjar iff it is a P-point with no rapid
RK-predecessor

Theorem
If I is a tall Fσ P-ideal then P(ω)/I does adds a P-point with no
rapid RK-predecessors which is not Canjar
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HM-condition, strong P-points

Theorem (Hrušák-Minami)
U is Canjar iff each descending sequence Xn ∈ ([U ]<ω)+ has a
pseudointersection in ([U ]<ω)+, where

([U ]<ω)+ = {X ⊆ [ω]<ω : (∀F ∈ U)(∃a ∈ X)(a ⊆ F )}

Theorem (Blass, Laflamme)
U is Canjar iff it is a strong P-point.
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Disproof of Laflamme’s conjecture

Proof.
I For the first part use Vojtáš’s characterization of rapid

ultrafilters and Mazur’s theorem.

I Compute a little bit.
I Use characterization of Canjar ultrafilters due to Hrušák and

Minami.
I Let I = Fin(µ) = Exh(µ), Xn = {a ∈ [ω]<ω : µ(a) ≥ n}.
I Compute a bit more . . .
I and you are done.
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Existence of Canjar ultrafilters

Theorem (Canjar)
Forcing with Fσ-ideal adds a Canjar ultrafilter.

Question
Is there an ideal I such that P(ω)/I adds a Canjar ultrafilter?
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Examples

Example
P(ω)/EDfin adds a rapid with a selective RB-below.

Example
fin× fin adds a Q-point which is not a P-point.

Example
P(ω)/GC adds a rapid which is neither a P-point nor a Q-point.
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